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Abstract In this paper, we extend both the rolled-up and the polyhedral models
for single-walled silicon nanotubes with equal bond lengths to models having distinct
bond lengths. The silicon nanotubes considered here are assumed to be formed by sp3

hybridization with different bond lengths so that the nanotube lattice is assumed to
comprise only skew rhombi. Beginning with the three postulates that all bonds lying
on the same helix are equal, all adjacent bond angles are equal, and all atoms are
equidistant from a common axis of symmetry, we derive exact formulae for the poly-
hedral geometric parameters such as chiral angles, bond angles, radius and unit cell
length. The polyhedral model presented here with distinct bond lengths includes both
the rolled-up model with distinct bond lengths which arises from the first term of an
asymptotic expansion, and an existing polyhedral model of the authors which assumes
equal bond lengths. Finally, some molecular dynamics simulations are undertaken for
comparison with the geometric model. These simulations start with equal bond lengths
and then stabilize in such a way that two distinct bond lengths emerge.

Keywords Silicon nanotubes · Geometry · Polyhedral model ·
Distinct bond lengths · Molecular dynamics simulations

1 Introduction

Due to silicon’s similarity to carbon there is considerable interest in nano-structures,
such as nanowires and nanotubes, formed from silicon. Recent interest in carbon
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nanotubes was ignited by Iijima’s discovery in 1991 [1] and recently silicon nanotubes
have been synthesized by both molecular beam epitaxy [2] and physical and chemical
vapor deposition [3] and large diameter silicon nanotubes are observed in [3]. Sili-
con and carbon belong to the same group of the periodic table but silicon and carbon
nanotubes have different bond configurations. Carbon nanotubes have a very stable
structure formed from sp2 hybridized bonds [4,5], which leads to carbon nanotubes
adopting a hexagonal honeycomb structure. On the other hand, silicon adopts an sp3

bond structure and therefore the four-coordinated atoms form a quadrilateral lattice
[4,6–9].

Most theoretical studies have investigated the structure of nanotubes assuming the
conventional rolled-up model for carbon nanotubes [10–12] and boron nanotubes
[13,14], where these nanotubes are conceptualized as two dimensional sheets that are
then rolled into right circular cylinders. Silicon nanotubes might also be considered to
be rolled up from silicon sheets. Recently, Cox and Hill [15,16] propose a new geo-
metric polyhedral model of single-walled carbon nanotubes, in which all bond lengths
are assumed to be equal, and which makes predictions on the geometric parameters of
the nanotubes which are in excellent agreement with first-principles calculations [15].
The corresponding geometric polyhedral model for silicon with equal bond lengths
is formulated by the present authors in [17]. Harmonic vibrational analysis based on
Moller–Plesset perturbation theory using a second order level molecular-orbital the-
ory [9] suggests that the bond lengths of silicon nanotubes have different lengths in
different directions. For the present work we employ a similar polyhedral model to that
formulated in [15,16] for carbon nanotubes and [17] for silicon nanotubes to represent
single-walled silicon nanotubes but we extend the model to allow for distinct bond
lengths.

The silicon nanotubes considered here are all assumed to comprise a skew rhom-
bic lattice of four coordinated atoms. As detailed in Lee et al. [17], the terminology
adopted for carbon nanotubes, namely zigzag and armchair, is entirely inappropriate
for silicon nanotubes, and here we follow [17] and categorize these tubes as being
either prismatic, antiprismatic or chiral type based on the values of the chiral vec-
tor numbers (n,m). When m = 0, we refer to these nanotube types as prismatic. In
the case m = n, we term these nanotubes as antiprismatic. In all other cases, when
0 < m < n, we follow the carbon nanotube terminology and term the nanotube as
chiral.

The geometric polyhedral model for silicon nanotubes with distinct bond lengths is
developed in a similar manner to that for the geometric polyhedral model for carbon
nanotubes [15,16] and for silicon nanotubes [17] and is based on the following three
fundamental postulates: (i) corresponding bonds lying on the same helix are equal in
length to either σ1 or σ2 which are assumed generally to be distinct; (ii) all adjacent
bond angles are equal to φ; and (iii) all atomic nuclei are equidistant r from a common
axis. Silicon nanotubes generated from this polyhedral model are shown in Fig. 1 with
σ1 = 2.35 Å and σ2 = 2.75 Å. In this figure the silicon atoms are represented by
black dots and the bonds between silicon atoms are indicated by black lines.

In Sects. 2 and 3 we extend the rolled-up model and the polyhedral model for silicon
nanotubes with distinct bond lengths, respectively. In Sect. 4 we give the asymptotic
expansions for the formulae from Sect. 3 including the first two leading order terms.
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(5,5) antiprismatic(5,0) prismatic (5,3) chiral

Fig. 1 Polyhedral model for silicon nanotubes for prismatic, chiral and antiprismatic tubes with
σ1 = 2.35 Å and σ2 = 2.75 Å

In Sect. 5 the radius is discussed for different bond lengths and some molecular
dynamics simulations are undertaken for comparison with the geometric model. Some
concluding remarks are made in the Sect. 6. Appendix A provides details for some of
the asymptotic expansions for the main geometric parameters.

2 Rolled-up model with distinct bond lengths for silicon nanotubes

Employing the same concept as that used for carbon nanotubes, we apply the (n,m)
naming scheme to identify the specific configuration of the silicon nanotube origi-
nating from the rolled-up model [10–14]. From Fig. 2, three different types of silicon
nanotubes can be defined by the value of m in relation to n. The naming convention
we employ for silicon nanotubes is different to the corresponding convention adopted
for hexagonal latices, e.g. carbon nanotubes. This difference is necessary because the
conventional terms are not applicable to a skew rhombi geometry. As noted above,
when m = 0, we term the resulting nanotube to be prismatic. This is equivalent
to the direction of rolling up of the nanotube OE and we use this term because the
tube comprises regular n-gon prisms. The second type, which we term antiprismatic,
occurs when m = n. In this case, the sheet is rolled following the direction OD. Chiral
tubes arise by rolling in a direction which is between OD and OE. The (n,m) naming
scheme for the nanotubes can be thought of as the chiral vector Ch, shown on Fig. 2.
In this figure we show a silicon nanotube of type (4, 2). The vector OB is called the
conventional translational vector T0 and consists of the vectors a1 and a2 which are
divided by the greatest common divisor d0R of n and m, and we have

Ch = na1 + ma2,

T0 = −ma1/d0R + na2/d0R,
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Fig. 2 Silicon nanotube constructed from two dimensional sheet

where n and m are the integers from the (n,m) naming scheme, a1 and a2 are basis
vectors in real space where |a1| = σ1 and |a2| = σ2, where σ1 and σ2 are different bond
lengths, and d0R is the greatest common divisor of n and m. We note that through-
out we use the subscript 0 to designate quantities associated with the conventional
rolled-up model.

In Fig. 2 the origin O is located at an arbitrary lattice point. The conventional trans-
lational vector T0 is perpendicular to the chiral vector Ch when the bond lengths are
equal. However, in general they are not perpendicular. The sheet is rolled up to form
a nanotube where the point A will coincide with the origin O and the point B will
coincide with the point B ′. From Fig. 2 the conventional chiral angle θ0 is found to be

cos2 θ0 = σ 2
1 n2/

(
σ 2

1 n2 + σ 2
2 m2

)
. (1)

The conjugate chiral angle θ̄0 which is 90°−θ0 is expressed as

cos2 θ̄0 = σ 2
2 m2/

(
σ 2

1 n2 + σ 2
2 m2

)
, (2)

with the relationship cos θ̄0 = sin θ0.
Silicon nanotubes are also considered to be constructed from a repeating unit cell,

when the ratio of the bond lengths λ2 = σ 2
1 /σ

2
2 = pλ/qλ is rational. In other cases,

the nanotubes have no repeating unit cell. The unit cell length for the rolled-up model
is not the length of the conventional translational vector |T0|, since the conventional
translational vector T0 and the chiral vector Ch are not perpendicular. For bond lengths
that are not equal, the new translational vector T which is perpendicular to the chiral
vector Ch is given by
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T = −mqλa1/dR + npλa2/dR,

where

λ2 = σ 2
1 /σ

2
2 = pλ/qλ, dR = gcd(npλ,mqλ),

where pλ and qλ are relatively prime integers and gcd(x, y) is the greatest common
divisor of x and y, and when the bond lengths are equal, the values of pλ and qλ are
one. The conventional translational vector T0 is a special case arising from equal bond
lengths of the new translational vector T. The unit cell length for the rolled-up model
is the length of the new translational vector |T| which is given by

L0 =
√
σ 2

2 n2 p2
λ + σ 2

1 m2q2
λ/dR . (3)

Prismatic (m = 0) and antiprismatic tubes (m = n) have exact values for the unit cell
length which are L0 = σ2 and L0 = n

√
2σ1σ2 pλqλ/dR , respectively. The number of

atoms in a unit cell N is given by N = |Ch × T|/|a1 × a2| and therefore the number
of atoms in the unit cell for the rolled-up model is found to be given by

N = (n2 pλ + m2qλ)/dR . (4)

When the bond lengths are equal, the values of the unit cell length and the number of
atoms are the same as those given in Lee et al. [17]. The conventional radius equation
for the nanotube is given by the magnitude of the chiral vector |Ch|, divided by 2π
and thus

r0 =
√
σ 2

1 n2 + σ 2
2 m2/(2π). (5)

3 Polyhedral model with distinct bond lengths for silicon nanotubes

The polyhedral model with distinct bond lengths for silicon nanotubes is similar to
the ideal polyhedral models for carbon nanotubes [15,16] and for silicon nanotubes
[17]. From the fundamental postulate (iii) that all atoms in the silicon nanotube are
equidistant from a common axis, it follows that the vertices of each face cannot be
coplanar except in the special case of prismatic tubes and therefore in the rolled-up
state, the lattice generally comprises skew rhombi. For the ideal polyhedral model
of carbon nanotubes, each hexagonal lattice is divided into three isosceles triangles
and one equilateral triangle [15,16]. However, as we demonstrate below, the skew
rhombic lattice does not need to be subdivided. We begin by defining a cylinder on
whole surface is traced out a family of helices that correspond to the lattice lines in
the direction of a1. Therefore, from Fig. 2 it may easily be shown that the number of
helices is equivalent to the value of m and the silicon atoms are positioned on these
helices where the helices are shown on Fig. 3 which |PQ| = σ1 and |PR| = σ2.
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Fig. 3 Points lying on three helices and forming a skew rhombus in three-dimensional space

From postulates (i) and (ii), the fundamental parameter for the polyhedral model
with distinct bond lengths is the subtend semi-angle ψ , which is determined from the
equation:

4nm
(

sin2 ψ − λ2 sin2 ξ
)

+
(
λ2n2 − m2

) [
sin2(ξ + ψ)− sin2(ξ − ψ)

]
= 0, (6)

where ξ = (nψ − π)/m and λ = σ1/σ2. The subtend semi-angle ψ is determined
as the root of this equation. We observe that the root of Eq. 6 depends on the ratio
λ = σ1/σ2 and the values of n and m. Equation 6 may have many roots but based
on a specific requirement the subtend semi-angle ψ must also satisfy the following
inequalities

{
π/(n + m) ≤ ψ ≤ π/n when λ ≥ 1,
0 ≤ ψ ≤ π/n when λ < 1.

The root of Eq. 6 which also satisfies these inequalities can be accurately determined
numerically by a small number of iterations of Newton’s method, using the initial
value of the root given by ψ0 = σ 2

1 nπ/(σ 2
1 n2 + σ 2

2 m2). From Eq. 6 the exact values
of the subtend semi-angle ψ is found as ψ = π/n for the prismatic type m = 0. From
the initial value equation, the subtend semi-angle ψ depends on n,m and a ratio of
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Fig. 4 Points forming PQQ′ in
three-dimensional space

Q'
P

C

Q

c
b

d

r
r

1

2

bond lengths λ except prismatic (n, 0) that is not similar to ideal polyhedral model
which the subtend semi-angle ψ depends only on n and m.

The true chiral angle θ1, by which we mean � QPQ′, is found by considering a
triangle comprising the points P,Q and a new point Q′ which we define as the point
determined by projecting Q into the xy-plane as shown in the Fig. 4. The conjugate
chiral angle θ2 is the angle of � RPR′ where R′ is the point determined by projecting
R into the xy-plane as shown in the Fig. 3. Similarly, the conjugate chiral angle θ2 is
found by triangles �PRR′ and �CPR′. The true chiral angle θ1 and the conjugate
chiral angle θ2 corresponding to the chiral angle θ0 and the conjugate chiral angle θ̄0
are given by

cos2 θ1 = (n sinψ)/(n sinψ − m cosψ sin ξ cos ξ),

cos2 θ2 = (m sin ξ)/(m sin ξ − n sinψ cosψ cos ξ). (7)

The adjacent bond angle φ is defined as the angle between two bonds where the atoms
that are being bonded form part of the same rhombus in the nanotube lattice and an
opposite bond angle is the angle between two bonds where the atoms that are being
bonded do not form part of the same rhombus in the nanotube lattice. The adjacent
bond angle φ and the two opposite bond angles ω1 and ω2 are derived from the cosine
law. The adjacent bond angle is found by considering a triangle comprising the points
R,S and Q. Using the same technique, the opposite bond angle ω1 is found from the
triangle �PQU and the opposite bond angle ω2 is found from the triangle �PRV. The
adjacent bond angle φ is given by

cosφ = [(λ2 + 1)m2 sin2 ψ − λ2m2 cos2 θ1 sin2(ξ + ψ)

−λ2(n + m)2 sin2 θ1 sin2 ψ]/(2λm2 sin2 ψ), (8)

and the opposite bond angles ω1 and ω2 are given by
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cosω1 = 2 cos2 θ1 sin2 ψ − 1,

cosω2 = 1 − (2λ2n2 sin2 θ1)/m2 − [λ2 cos2 θ1 sin2(2ξ)]/(2 sin2 ψ). (9)

The nanotube radius r is the distance from each silicon atom to the axis of the nanotube
which may be found from cos θ1 in Fig. 4 and the length of |PQ| = c = σ1, the length
of a silicon-silicon covalent bond, and therefore the nanotube radius r is given by

r = (σ1 cos θ1)/(2 sinψ). (10)

Since both θ1 and ψ depend only on the ratio λ = σ1/σ2, we observe that the radius
r as a function of σ1 and σ2 is homogenous of degree one.

Silicon nanotubes might be considered to be constructed from a repeating unit cell,
when the ratio of the bond lengths λ is rational. The number of atoms in the unit cell
N for the polyhedral model is the same as the rolled-up model, which is the Eq. 4. A
unit cell length L is the number of atoms in a single helix multiplied by the helical
vertical spacing coefficient b. The number of atoms in a single helix is found from the
number of atoms in a unit cell N divided by m helices. Thus for the unit cell length
we may derive from L = Nb/m and the expression is

L = [σ1(n
2 pλ + m2qλ) sin θ1]/(mdR), (11)

where the values of pλ and qλ are the same as those for the rolled-up model.

4 Asymptotic expansions for polyhedral model

As shown in Appendix A, the equations of the polyhedral model may be expanded in
terms of expansions of n and m in the limit of n → ∞ by using the method of asymp-
totic expansions. The subtend semi-angleψ determined from the transcendental Eq. 6
is given by

ψ = σ 2
1 nπ

σ 2
1 n2 + σ 2

2 m2
− σ 2

1 σ
2
2 nm2π3

[
σ 6

1 n4 − 2σ 2
1 σ

2
2 n2m2

(
σ 2

1 − σ 2
2

) − σ 6
2 m4

]

3
(
σ 2

1 n2 + σ 2
2 m2

)5

+ O

(
1

n5

)
, (12)

where the O(1/n5) term refers to the maximum order of the magnitude of the next
most significant term. The first term of Eq. 12 gives the leading order behavior for the
subtend semi-angle ψ and the second term may be viewed as a correction term which
takes into account the curvature of the cylinder in question. It is worth commenting
that up to this order Eq. 12 is totally in accordance with the special case of prismatic
nanotubes m = 0, where ψ = π/n.

By substituting Eq. 12 into the expressions for the true chiral angle θ1 and the
conjugate chiral angle θ2 given in Eq. 7 and then by further expansion in terms of
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1/n, an expansion for the true chiral angle θ1 and the conjugate chiral angle θ2 may
be developed which are given by

cos2 θ1 = σ 2
1 n2

σ 2
1 n2 + σ 2

2 m2
+ σ 2

1 σ
4
2 n2m4π2

(
σ 4

1 n2 + σ 4
2 m2

)
(
σ 2

1 n2 + σ 2
2 m2

)5
+ O

(
1

n4

)
,

cos2 θ2 = σ 2
2 m2

σ 2
1 n2 + σ 2

2 m2
+ σ 4

1 σ
2
2 n4m2π2

(
σ 4

1 n2 + σ 4
2 m2

)
(
σ 2

1 n2 + σ 2
2 m2

)5
+ O

(
1

n4

)
, (13)

where the leading order term is exactly the corresponding angles θ0 and θ̄0 which are
the conventional expressions of the chiral angle (1) and the conjugate chiral angle (2).
The second term is the first-order correction to the conventional chiral angle θ0 and it
may be shown that Eq. 13 can be expressed as

cos2 θ1 = cos2 θ0 +
[
cos2 θ0 sin4 θ0

(
σ 2

1 cos2 θ0 + σ 2
2 sin2 θ0

)]
/
(

4r2
0

)
+ O(1/n4),

cos2 θ2 = cos2 θ̄0 +
[
cos2 θ̄0 sin4 θ̄0

(
σ 2

2 cos2 θ̄0 + σ 2
1 sin2 θ̄0

)]
/(4r2

0 )+ O(1/n4),

(14)

where r0 is the conventional radius. The asymptotic expansion of the conjugate chiral
angle θ2 might also be expressed as

cos2 θ2 = sin2 θ0 +
[
cos4 θ0 sin2 θ0

(
σ 2

1 cos2 θ0 + σ 2
2 sin2 θ0

)]
/(4r2

0 )+ O(1/n4),

since the conventional conjugate chiral angle has a relationship with θ0 is cos θ̄0 =
sin θ0.

The expansion equation for the adjacent bond angle φ is found by substituting Eq.
12 in Eq. 8, where upon the expansion of cosφ is given by

cosφ = σ 3
1 σ

3
2 n2m2π2

(
σ 2

1 n2 + σ 2
2 m2

)3

+ σ 3
1 σ

3
2 n2m2π4

[
2σ 8

1 n6 − σ 4
1 σ

2
2 n4m2(4σ 2

1 − 3σ 2
2 )+ σ 2

1 σ
4
2 n2m4

(
3σ 2

1 − 4σ 2
2

) + 2σ 8
2 m6

]

3
(
σ 2

1 n2 + σ 2
2 m2

)7

+ O(1/n6).

The two opposite bond angles, ω1 and ω2 are expanded by substituting (12) and (13)
into the Eq. 9 for cosω1 and cosω2 to obtain

cosω1 = −1 +
(

2σ 6
1 n4π2

)
/
(
σ 2

1 n2 + σ 2
2 m2

)3 + O(1/n4),

cosω2 = −1 +
(

2σ 6
2 m4π2

)
/
(
σ 2

1 n2 + σ 2
2 m2

)3 + O(1/n4).

The first term is exactly the rolled-up model value and the second term is the first-order
correction to the conventional value.
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Using the same technique asymptotic expansions may be developed for the nano-
tube radius r and is given by

r =
√
σ 2

1 n2 + σ 2
2 m2

2π
+ π

[
σ 8

1 n6 + 4σ 2
1 σ

2
2 n2m2

(
σ 4

1 n2 + σ 4
2 m2

) + σ 8
2 m6

]

12
(
σ 2

1 n2 + σ 2
2 m2

)7/2

+ O

(
1

n3

)
, (15)

where the leading order term is exactly the conventional expression 5. Similarly, it
can be shown that the second term is a first-order correction to the conventional radius
which is due to the curvature of the structure, which can be written in terms of the
conventional chiral angle θ0 and the conventional radius r0 by Eqs. 1 and 5 as

r = r0 +
[
σ 2

1 cos4 θ0(4 − 3 cos2 θ0)+ σ 2
2 sin4 θ0(4 − 3 sin2 θ0)

]
/(24r0)+ O(1/n3).

(16)

An asymptotic expansion of the unit cell length L yields

L =
√

n2σ 2
2 p2

λ + m2σ 2
1 q2
λ

dR
−
σ 2

1 σ
2
2 n2m2π2

(
σ 4

1 n2 + σ 4
2 m2

)√
n2σ 2

2 p2
λ + m2σ 2

1 q2
λ

2
(
σ 2

1 n2 + σ 2
2 m2

)4
dR

+ O

(
1

n3

)
, (17)

where we note that the first term in Eq. 17 is exactly the conventional expression 3. It
may be shown that the second term is a first-order correction to the conventional unit
cell length which is due to the curvature of the structure, which is given by

L = L0 −
[

L0

(
σ 2

1 cos2 θ0 + σ 2
2 sin2 θ0

)
sin2(2θ0)

]
/(32r2

0 )+ O(1/n3). (18)

5 Results

Figure 5 shows that a plot of the radius rλ divided by σ1 versus the ratio of bond lengths
λ = σ1/σ2 for n = 3 and 4 and various values of m, where rλ is the radius in the
λ ratio system. This figure shows the change in the radius as a function of the bond
length σ2. The prismatic types show a constant variation because the radius of the
prismatic type depends only on σ1. For antiprismatic tubes, the bond lengths have the
same contribution to the radius when they are equal and therefore a longer bond length
contributes more to increasing the radius. The figure shows that the antiprismatic types
have a larger change in curvature because σ2 decreasing corresponds to λ increasing.
In all other cases, the chiral tubes exhibit behavior that is between the prismatic and
the antiprismatic tubes.
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Fig. 5 Variation of rλ/σ1 with λ = σ1/σ2 for n = 3 and 4, a (3,m) and b (4,m)
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Fig. 6 Variation of rλ/σ2 with λ = σ1/σ2 for n = 3 and 4, a (3,m) and b (4,m)

Similarly, Fig. 6 shows the variation of the radius rλ divided by σ2 versus the ratio
of bond lengths λ = σ1/σ2 for n = 3 and 4 and various values of m. Again, the
prismatic types show a straight line because the radii of prismatic tubes depend only
on σ1. Although (3,0) and (4,0) are straight lines, they have different slopes because
the radius also depends on n. The figure shows the variation for (3,m) and (4,m)
tubes and that the gradient of the lines decrease as m increases.

By examining the asymptotic expansions of the equations for the polyhedral model
for the chiral angles (14), the radius (16) and the unit cell length (18), we observe
that the leading order term of the analytical expressions gives the conventional for-
mulae as their highest order term and that the second term is a first-order correction
to the conventional model. This demonstrates that the polyhedral model converges
to the conventional model for large n. The equations for the subtend semi-angle (6),
the chiral angles (7), the adjacent bond angle (8), the opposite bond angles (9), the
radius (10) and the unit cell length (11) are the same as those given in Lee et al. [17],
when the bond lengths are equal. Our polyhedral model for the skew rhombi structure
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Fig. 7 Comparison of rλ/σ1 as a function of λ = σ1/σ2 for various models (polyhedral, asymptotic,
conventional), a (4, 0), b (4, 2) and c (4, 4)

with distinct bond lengths might also be applied to other materials for those nanotubes
which are also based on the skew rhombi structure.

Figure 7 shows a plot of the radius rλ divided by σ1 versus the ratio of bond lengths
λ = σ1/σ2 for the prismatic, chiral and antiprismatic tubes. The radius of the poly-
hedral and the conventional models is obtained from the exact formulae (10) and
(5), and the radius for the asymptotic expansion is obtained using the first two terms
of the expansion (15). We observe that all three models display a similar variation
with λ, except that the conventional model is quite different in terms of the abso-
lute magnitude of the predicted radii. The asymptotic expansion is very close to the
polyhedral model where the first term of the asymptotic expansion is exactly the
conventional expression, and the second term of the asymptotic expansion is a first-
order correction to the conventional model. Similarly, Fig. 8 shows a plot of the
different models for the radius rλ divided by σ2 versus the ratio of bond lengths
λ = σ1/σ2, which are essentially linear in λ for different nanotube types and different
models.

To provide some independent numerical data that the structures considered here
are at least meta-stable, we have relaxed the idealised silicon nanotube structures with
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Fig. 8 Comparison of rλ/σ2 as a function of λ = σ1/σ2 for various models (polyhedral, asymptotic,
conventional), a (4, 0), b (4, 2) and c (4, 4)

all the bond lengths set equal to 2.35 Å using the LAMMPS software (see Lee et al.
[17] and Plimpton [18]) and we model the silicon pairwise interactions using a Stil-
linger-Weber potential [19]. Our approach is then to establish the simulations for an
initial temperature of T Kelvin with T ∈ {100, 200, . . . , 600} which is reduced to
zero Kelvin over 100,000 time steps, and at the end of the simulations the structures
are examined for inconsistencies. For silicon nanotubes (n,m) with 500 atoms which
n ∈ {3, 4, . . . , 10} and m ∈ {0, 1, . . . , n}, the simulation domain extends 6 nm in both
the x and y directions for non-periodic and shrink-wrapped boundary conditions. The
length in the z direction is based on a tube comprising 500 atoms and we employ a
periodic boundary condition in the z direction.

After the molecular dynamics simulations, most of the silicon nanotubes consid-
ered here appear not to stabilize as recognizable tubes and only nine of the silicon
nanotubes are found to have a stable tube structure out of originally considering sixty
tubes. The nine stable tubes found are (4,0), (5,0), (6,0) and (7,0) for the prismatic
type and (4,1), (4,2), (5,1), (6,1) and (7,1) for the chiral type. The simulations indicate
that all the antiprismatic types considered are unstable structures. However, all the
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Table 1 Results of molecular dynamics simulations for stable silicon nanotubes at 100 K

(n,m) σ∗
1 (Å) σ∗

2 (Å) r∗ (Å) r (Å) r0 (Å) Tac(K )

(4,0) 2.462 ± 0.031 2.573 ± 0.040 1.74 ± 0.08 1.74 1.57 1,400

(4,1) 2.431 ± 0.032 2.588 ± 0.017 1.75 ± 0.07 1.78 1.60 1,000

(4,2) 2.479 ± 0.023 2.611 ± 0.040 1.88 ± 0.03 1.96 1.78 300

(5,0) 2.418 ± 0.051 2.574 ± 0.038 2.12 ± 0.01 2.06 1.92 1,000

(5,1) 2.413 ± 0.012 2.571 ± 0.021 2.07 ± 0.05 2.10 1.96 800

(6,0) 2.429 ± 0.066 2.580 ± 0.087 2.42 ± 0.07 2.43 2.32 800

(6,1) 2.449 ± 0.055 2.564 ± 0.076 2.47 ± 0.45 2.49 2.37 600

(7,0) 2.466 ± 0.098 2.571 ± 0.091 2.84 ± 0.69 2.84 2.75 500

(7,1) 2.447 ± 0.037 2.602 ± 0.028 2.83 ± 0.43 2.85 2.76 400

stable nanotube structures become unstable when the initial temperature T Kelvin is
increased, and the temperature at which the structure becomes unstable is called the
critical temperature. In order to examine the critical temperature for the stable nano-
tubes, they are simulated again with 100 atoms from 100 to 1,500 K and increasing
by 100 K. The critical temperature so obtained is an approximate critical temperature
Tac, since the temperature is examined only for every hundred Kelvin. All the initial
bond lengths are set to be the same value but after the simulations, two distinct bond
lengths emerge and the σ ∗

2 bond length appears to be longer than the σ ∗
1 bond length,

where the ∗ indicates the molecular dynamics simulations results. The stable silicon
nanotubes for the bond lengths σ ∗

1 and σ ∗
2 and radius r∗ which are measured at 100 K

simulations and the radii r, r0 which are the radius for the polyhedral model and the
rolled-up model using σ ∗

1 and σ ∗
2 are shown in Table 1 and the adjacent bond angle

φ∗ and φ and the opposite bond angles ω∗
1, ω

∗
2, ω1 and ω2 are shown in Table 2. The

bond lengths σ ∗
1 and σ ∗

2 and the radii r∗, r and r0 for (4, 0) at different temperatures
are shown in Table 3. The actual nanotubes obtained from the molecular dynamics
simulations for (4, 0), (4, 1) and (4, 2) are shown in Figs. 9, 10 and 11.

Table 1 shows a comparison of the radius for the polyhedral model and the rolled-up
model with distinct bond lengths as compared with the molecular dynamics simula-
tions at 100 K and it is apparent that the results of the polyhedral model and the
molecular dynamics simulations are in excellent agreement. However, there is a large
difference for the radius predicted by the rolled-up model and that for the molecular
dynamics simulations, especially for the smaller radii nanotubes. The approximate
critical temperatures Tac show that the prismatic (n, 0) tubes and the (n, 1) chiral
tubes are stable structures for n ∈ {4, 5, 6, 7}. For (n, 2) chiral, only (4, 2) provides a
possible stable tube structure. The other chiral and all the antiprismatic tubes appar-
ently could not be formed and therefore they may be unstable structures. The structure
of the nanotube becomes increasingly unstable as both m and n increase. Thus, the
approximate critical temperatures Tac decrease when n or m increase. As a result, the
ultra-small and very large radii nanotubes tend not to occur, and there is a definite
range of radii found from the molecular dynamics simulations (1.74Å ≤ r ≤ 2.83Å).

Table 2 shows a comparison of the bond angles for the polyhedral model with dis-
tinct bond lengths as compared with the molecular dynamics simulations at 100 K.
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Table 3 Results of molecular dynamics simulations for (4, 0) at different temperatures

T (K) σ∗
1 (Å) σ∗

2 (Å) r∗ (Å) r (Å) r0 (Å)

100 2.462 ± 0.031 2.573 ± 0.040 1.74 ± 0.08 1.74 1.57

200 2.462 ± 0.022 2.573 ± 0.040 1.74 ± 0.08 1.74 1.57

300 2.445 ± 0.016 2.595 ± 0.018 1.73 ± 0.04 1.73 1.56

400 2.454 ± 0.031 2.592 ± 0.072 1.73 ± 0.05 1.74 1.56

500 2.450 ± 0.047 2.588 ± 0.041 1.73 ± 0.05 1.73 1.56

600 2.439 ± 0.020 2.588 ± 0.038 1.73 ± 0.05 1.72 1.55

700 2.451 ± 0.030 2.587 ± 0.026 1.73 ± 0.05 1.73 1.56

800 2.448 ± 0.031 2.585 ± 0.052 1.73 ± 0.03 1.73 1.56

900 2.446 ± 0.029 2.597 ± 0.037 1.73 ± 0.04 1.73 1.56

1,000 2.443 ± 0.018 2.590 ± 0.023 1.73 ± 0.04 1.73 1.56

Fig. 9 (4, 0) at 100 K

Fig. 10 (4, 1) at 100 K

The bond angles φ∗, ω∗
1 and ω∗

2 are the average of the bond angles measured from two
rings of the nanotube and the error is two standard deviations. The bond angles φ,ω1
and ω2 are calculated from the polyhedral model using the values σ ∗

1 and σ ∗
2 . The

results of the adjacent bond angle φ and the opposite bond angle ω1 of the polyhedral
model and the molecular dynamics simulations are in excellent agreement. The cal-
culated adjacent bond angle φ∗ has a large error, and therefore we have grouped the
raw data into two groups as either above or below 90° which are termed the adjacent
bond angles φ∗

a and φ∗
b . The low value of the error obtained for the adjacent bond

angles φ∗
a and φ∗

b suggests that the adjacent bond angle may have two distinct values.
The opposite bond angle ω2 for prismatic tubes does not match well with the molec-
ular dynamics simulations results because the tube possesses an off-centred structure
which alternates along the nanotube length as shown in Fig. 9. The structures of the
molecular dynamics simulations results for (4,1) and (4,2) which are shown in Figs. 10
and 11 are similar to those predicted from the polyhedral model.
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Fig. 11 (4, 2) at 100 K

6 Conclusion

Silicon nanotubes are formed from stable structures by sp3 bond hybridization which
leads to four coordinated atoms that adopt a skew rhombic lattice, so that they may
have different bond lengths in different directions [9]. The main geometric parameters
are shown in Table 4 for the conventional rolled-up model. By formulating the poly-
hedral model which is based on the three fundamental postulates, which are that all the
bond lengths lying on the same helix are equal, that all the adjacent bond angles are
equal and that all atomic nuclei are equidistant from a common axis, we have derived
equations for the key geometric parameters that arise, such as the subtend angle 2ψ ,
the chiral angles θ1 and θ2, the adjacent bond angle φ, the opposite bond angles ω1
and ω2, the radius r and the unit cell length L (see Table 5). The subtend semi-angle
ψ is the fundamental variable on which all the other parameters depend and we find
that it is determined from the transcendental Eq. 6 and therefore cannot be written
as a simple analytical function of λ, n and m. The radius r as given by Eq. 10 is a
homogeneous function of degree one in σ1 and σ2. We see from Fig. 6 that rλ/σ2 is
essentially linear in λ = σ1/σ2. Figures 7 and 8 demonstrate that the first two terms of
the asymptotic expansion (15) constitute a very accurate approximate formula for the
radius r as given by (10). It is also apparent from these figures that there are significant
differences between the conventional rolled-up model and the polyhedral model. The
polyhedral model converges to the conventional model for large n because the lead-
ing term of the analytical expressions gives the conventional formulae as the highest
order term, while the second order term may be viewed as a first-order correction to

Table 4 Main equations for rolled-up model

Parameter name Equation

Chiral vector Ch Ch = na1 + ma2

Conventional translational vector T0 T0 = (−ma1)/d0R + (na2)/d0R

New translational vector T T = (−mqλa1)/dR + (npλa2)/dR

Chiral angle θ0 cos2 θ0 =
(
σ 2

1 n2
)
/
(
σ 2

1 n2 + σ 2
2 m2

)

Conjugate chiral angle θ̄0 cos2 θ̄0 =
(
σ 2

2 m2
)
/
(
σ 2

1 n2 + σ 2
2 m2

)

Unit cell length L0 L0 =
√
σ 2

2 n2 p2
λ + σ 2

1 m2q2
λ/dR

Number of atoms in the unit cell N N = (n2 pλ + m2qλ)/dR

Nanotube radius r0 r0 =
√
σ 2

1 n2 + σ 2
2 m2/(2π)
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the conventional model. The polyhedral model with distinct bond lengths includes all
the results for the polyhedral model with equal bond lengths [17].

From the molecular dynamics simulations, only nine silicon nanotubes appear to
have a stable tube structure out of originally considering sixty possible tubes. The
tubes found to be stable are (4,0), (5,0), (6,0) and (7,0) for the prismatic and (4,1),
(4,2), (5,1), (6,1) and (7,1) for the chiral. The antiprismatic and most of the chiral
tubes appear to be unstable structures. The approximate critical temperatures Tac are
shown to decrease with increasing m and n, and the ultra-small and very large radii
nanotubes tend not to occur, and there is a definite range of radii found from the
molecular dynamics simulations (1.74Å ≤ r ≤ 2.83Å). Comparisons of the radii for
the stable nanotubes with the molecular dynamics simulations show that the radii pre-
dicted by the polyhedral model with distinct bond lengths are in excellent agreement.
The adjacent bond angle φ and the opposite bond angle ω1 of the polyhedral model
and the molecular dynamics simulations are also in excellent agreement. The adjacent
bond angle φ∗ appears to have two distinct values φ∗

a and φ∗
b because the error of the

actual φ∗ is very large as compared with the relatively small errors of φ∗
a and φ∗

b . The
opposite bond angle ω2 for prismatic tubes does not match with the molecular dynam-
ics simulations results because the simulated tubes adopt an alternating off-centred
structure. However, the structures of the molecular dynamics simulations results for
(4, 1) and (4, 2) coincide with the polyhedral model.

Acknowledgments The support of the Australian Research Council, both through the Discovery Project
Scheme and for providing an Australian Professorial Fellowship for JMH and an Australian Post-doctoral
Fellowship for BJC is gratefully acknowledged.

Appendix A: Asymptotic expansions of exact formulae

The root of the subtend semi-angle ψ in (6) is determined by a series expansion in
powers of 1/n and we then use this as the basis for determining series expansions for
all of the other parameters derived in the previous section. Firstly, (6) is written in the
form

4h
(
σ 2

2 sin2 ψ − σ 2
1 sin2 ξ

)
+

(
σ 2

1 − σ 2
2 h2

)
[sin2(ξ + ψ)−sin2(ξ − ψ)]=0, (19)

where ξ = (ψ−π/n)/h and h = m/n. The numbers m and n are assumed to be of the
same magnitude, so that the order of h is assumed to be of order one. As n increases
ψ becomes small, and therefore (19) can be expanded in terms of ψ and 1/n, where
we define the series as

ψ = ψ0(h)

n
+ ψ1(h)

n3 + ψ2(h)

n5
+ · · · ,

cos2 θ1 = a0(h)+ a1(h)

n2 + a2(h)

n4 + · · · .
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By the method of asymptotic expansions we may derive

ψ0(h) = σ 2
1 π

σ 2
1 + σ 2

2 h2
, ψ1(h) = −σ

2
1 σ

2
2 h2π3

[
σ 6

1 − 2σ 2
1 σ

2
2 h2(σ 2

1 − σ 2
2 )− σ 6

2 h4
]

3
(
σ 2

1 + σ 2
2 h2

)5
,

(20)

which gives ψ is in its asymptotic form (12), by substituting for h = m/n in (20).
Now the equation for cos2 θ1 (7) is expanded by substituting the asymptotic expan-

sion for ψ . As a result, we find that the expansion coefficients are given by

a0(h) = σ 2
1

σ 2
1 + σ 2

2 h2
, a1(h) = σ 2

1 σ
4
2 π

2h4
(
σ 4

1 + σ 4
2 h2

)
(
σ 2

1 + σ 2
2 h2

)5
.

Similarly, the asymptotic equation of the conjugate chiral angle cos2 θ2 (7) is expressed
as

cos2 θ2 = σ 2
2 h2

σ 2
1 + σ 2

2 h2
+ σ 4

1 σ
2
2 π

2h2
(
σ 4

1 + σ 4
2 h2

)
(
σ 2

1 + σ 2
2 h2

)5

1

n2 + O

(
1

n4

)
.

The adjacent bond angle φ is found from substituting the asymptotic equation of ψ in
(8) which is given by

cosφ = σ 3
1 σ

3
2 h2π2

(σ 2
1 + σ 2

2 h2)3

1

n2

+
σ 3

1 σ
3
2 h2π4

[
2σ 8

1 − σ 4
1 σ

2
2 h2

(
4σ 2

1 − 3σ 2
2

)
+ σ 2

1 σ
4
2 h4

(
3σ 2

1 − 4σ 2
2

)
+ 2σ 8

2 h6
]

3
(
σ 2

1 + σ 2
2 h2

)7
1

n4

+O(1/n6).

The series expansion of the opposite bond angle ω1 is found by substituting the series
expansion for cos2 θ1 and expanding the asymptotic equation forψ . As a result, cosω1
is given by

cosω1 = −1 + 2C2ψ2 − (2C2ψ4)/3 + O(ψ6),

where C = cos θ1. The asymptotic expansion of the opposite bond angleω2 is obtained
by substituting the series expansions for ψ and cos θ1 given by

cosω2 = −1 + 2σ 6
2 h4π2

(
σ 2

1 + σ 2
2 h2

)3

1

n2 + O

(
1

n4

)
.
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By substitution of the series expansion for cos θ1 into the formula for the nanotube
radius (10), and then expanding as a series in powers of ψ , we derive

r = (σ1C)/(2ψ)+ (σ1Cψ)/12 + O(ψ3), (21)

The unit cell length L (11) can be expressed by the following expansion

L =
√
σ 2

2 p2
λ + h2σ 2

1 q2
λ

dR
n −

σ 2
1 σ

2
2 h2π2(σ 4

1 + σ 4
2 h2)

√
σ 2

2 p2
λ + h2σ 2

1 q2
λ

2(σ 2
1 + σ 2

2 h2)4dR

1

n

+O

(
1

n3

)
. (22)

where C = cos θ1. From (21), (22) and the series expansions (12) and (13) for ψ and
C = cos θ1, we may produce expansions for the nanotube radius r and unit cell length
L , which is given by (15) and (17), respectively.
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